UK Smart Meter Roll Out: It’s All About The Data

LinkedInEvernoteFacebook

meter-installation-web

Despite some 2.6 million smart meters already being installed in the UK, it is the data infrastructure that is causing delays with the further roll out of smart meters in the UK, according to a recent BBC article. This IT project is necessary to support the volume of data anticipated to come from the smart meter roll out that is being pushed by the government.

From the chart below you can see how many meters have been installed since 2012.  Higher volumes of data are already being collected which reinforces the need for this important IT project to be up and running as soon as possible.

uk-smart-meters

(Chart and data available from the UK Department of Energy & Climate Change)

With news that the data infrastructure launch is pushed back until the autumn, what impact will this have?

How much data will smart meters generate?

To do a quick calculation on monthly meter reads from the potential smart meters across the UK, there would be around 53 million reads per month. By contrast, with smart meters that record data every 15 minutes, this could mean 96 reads a day from 53 million meters resulting in thousands of times more data being generated. This is obviously a rough estimation but gives an indication as to what the energy companies would be dealing with. This doesn’t include status messages from the meters which would add to the mass amount of data being generated.

Why is this so important, if smart meters are just about making billing automated and putting an end to manual meter reading? There is a lot more value within meter readings and status messages beyond billing.

The benefits of smart meters are clear for consumers: tracking how much energy you are using, monitoring the effect of changes that you have made to your energy consumption, and receiving accurate bills without having to submit a meter reading.

When applied properly, data helps energy companies to manage supply and demand in a much easier fashion. Energy companies benefit from analysing the data collected from the smart meters to enable new rates and business models, implement demand response programs, manage solar power panels in a better way and improve support for electric vehicles, to mention but a few.

To benefit from the thousands-fold growth in meter data, energy companies need analytics that locate the problems and opportunities hidden inside this massive amount of data. Smart meter analytics must be intelligent enough to do the heavy lifting for users, not just make it easier somehow for users to browse among millions of meters. Increasingly, analytics for this size of data set needs the intelligence and autonomy to make decisions independently.

Once the IT infrastructure is in the place, the UK energy companies can start pursuing the new value within smart meter data, analysing it to make better business decisions. All 53 million UK meters likely won’t be changed out by 2020, but that shouldn’t stop UK energy providers from using the smart meter data they already have, or will have soon.

(Image courtesy of rido / 123RF Stock Photo)

LinkedInEvernoteFacebook

Analytics And Transporting Crowds Of Olympics Fans

LinkedInEvernoteFacebook

crowd escalator train station web

With the European Football Championships having just come to a close and the Olympics due to start, the Summer of 2016 will have seen two major events that only happen once every four years on the sporting calendar. These are in addition to the regular annual sporting events such as Wimbledon, the British Grand Prix and the Rugby League Challenge Cup Final. With events such as these, a lot of people travel whether it be locally or internationally. Such spikes in travel can have implications on the travel networks and cause problems with people getting around.

Despite the fact that the football championship was in France and the Olympics Brazil, back at home in the UK it is likely that a huge number of people will be watching these events live whether that be in a pub, a sporting establishment such as a club or at home. A huge number of people would have traveled to Wimbledon and also to Silverstone as well as those who made a trip to France and the more adventurous who might descend on Brazil.

Of course in the modern day world where we are able to watch all of our TV on demand it doesn’t really matter whether we miss one of our favorite programs. In the case of live sport however, it is extremely difficult to keep away from social media, news alerts and radio during a live game. So it is likely that a lot of people will watch sport live to stop the end result being spoiled for them.

Take the Olympics for example. Not only will a lot of people travel to Brazil from all over the world, they then need to travel inside the country to see various events. Local Brazilians also need to travel around the country to see the various events plus conduct their usual business. This will cause an increase in people traveling around the country over the period that the Olympics is taking place.

How can analytics help in these cases?

Using data to predict spikes in demand for transportation could be paramount to the success of a large sporting event such as the Olympics. For example, how many tickets have been sold for an event in one of the satellite locations in Brazil could indicate a lot of people traveling from Rio at the same time. Using IoT and data analytics could mean looking forward to one of these events to predict who might be traveling and what effects this could have. By enriching the data further with the city or postal code of ticket purchaser could tell planners where people are traveling from.

Of course it is difficult to predict as a lot of the locations are new and Brazil hasn’t hosted the Olympics before, but by pulling together data from previous transport networks and large events, planners might be able to predict where blockages or problems might occur. Predicting potential problems offers the opportunity of preventing problems from occurring in the first place.

The main aim would be to look at passenger info for the main transport hubs and see where the potential problems might occur normally, then predict what could happen when these places are busier due to huge numbers of people. Brazil wants to make a good impression during the Olympics for people who are visiting but also for people from the country to be proud that it did a good job. By predicting how the transport networks could be affected it will mean that the travelers will be happy and safe whilst visiting the country but also the networks will remain reliable and thus the country will see overall economic benefits from hosting a large sporting event.

(Image courtesy paha_l / 123RF Stock Photo )

LinkedInEvernoteFacebook